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Abstract

Theoretical calculations are compared with well-controlled experiments conducted on a high-surface area, small diameter lithiated-carbon

electrodes. The electrodes are shown to yield very high current densities and exhibit little interfacial kinetics resistance or intercalate diffusion

resistance. The mathematical treatment describes quantitatively a wide range of electrochemical experiments. The application of the model to

the experimental data is facilitated by the use of a reference electrode. Initial cycling behavior of the high-surface-area electrode is elucidated,

including clarification of the first-cycle coulombic inefficiency. Nitrogen absorbtion and scanning electron micrographs are utilized to

ascertain the microstructural characteristics that distinguish the active electrode material. An asymptotic analysis is used to indicate when

diffusion resistance within host particles is negligible; this fact simplifies model calculations and contributes to our overall understanding of

insertion processes associated with host particles of very small dimensions.
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1. Introduction

Although the safety and performance benefits associated

with using lithiated carbon over metallic lithium in room-

temperature, solvent-based lithium batteries are well

accepted, elucidating the processes governing the perfor-

mance of the lithiated-carbon electrode remains a challen-

ging research objective [1–9,19]. It is the purpose of this

work to contribute to the research and development of

lithiated carbon anodes by extending previous characteriza-

tion methods and tools to examine a high-power carbon

anode material, which may be of interest for electric and

hybrid vehicle applications.

The vapor-grown carbon fibers used in this study are

described in [10–12]. We examine electrodes made from

these fibers and highlight the material’s high-power cap-

ability derived from the small diameter of the carbon fibers.

Scanning electron micrographs, nitrogen adsorption data,

and electrochemical experiments are reported, all of which

are employed in the modeling analysis.

The mathematical description we employ to simulate

the cyclic voltammetry experiments is analogous to that

developed for the modeling of batteries containing porous

insertion electrodes, with the primary exception being the

treatment of transport within the solid state [1,4,5,7,9,19].

References to early work concerned with the treatment of

insertion electrodes can be found in the paper by West et al.

[13], which provides a treatment of porous electrodes con-

structed with insertion materials, and related theoretical

investigations of metal-hydride electrodes [14–16]. Ver-

brugge and Koch [3,4] purpose and implement a procedure

to analyze lithium intercalation of single-fiber electrodes,

allowing one to isolate the properties intrinsic to the lithiated

carbon fiber; the results are not complicated by the influence

of binders, electronically conductive additives, current col-

lectors, or other components necessary for the fabrication of

porous carbon electrodes such as those used in this inves-

tigation. For the current investigation, however, the fibers are

of extremely small diameter, and in Appendix B, it is shown

that diffusion within the carbon fibers of the electrode takes

place fast enough so that transport is in quasi-steady state.

This fact simplifies greatly the model calculations and

facilitates our understanding of what processes govern the

electrode behavior. In general, the asymptotic analysis given

in Appendix B can also be applied to other insertion-

electrode materials in order to determine if diffusion resis-

tance of the guest species within the solid state needs to be

considered. We apply the model to examine the porous

lithiated-carbon electrode in an electrochemical cell of
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known dimensions and containing a reference electrode

[17,18] as well as a counter electrode.

2. Experimental

2.1. Materials

Solutions were made with distilled propylene carbonate

and reagent-grade, dried lithium perchlorate (Aldrich). For

all of the data discussed in this study, a 1 M LiClO4þ
propylene carbonate electrolyte was employed, and the

temperature was maintained at 25 �C. A description of the

purification procedures used is given in [3]. Lithium (Foote

Mineral, 99.99%) was used to construct the counter elec-

trode. Aluminum wire (Johnson Matthey, 100 mm diameter,

99.999%) was alloyed with lithium at a current density of

10 mA/cm2 until the average composition reached 2 mole

percent. The current was passed between the aluminum wire

and the lithium foil that later became the counter electrode.

The lithium aluminum reference maintained a stable open-

circuit potential, 0.387 V versus the lithium foil, throughout

the experiment duration, in agreement with previous inves-

tigations [20]. All experiments were conducted in a vacuum

atmospheres glove box fed with 99.999% argon gas (Scott

speciality gases). Provisions were made to remove trace

amounts of oxygen and water.

2.2. Electrochemical cell

A schematic illustration of the three-electrode cell is shown

in Fig. 1. The porous carbon electrode is located 1 mm away

from the lithium–aluminum reference wire and 2 mm away

from the lithium counter electrode. The superficial area of the

working and counter electrodes was 3.88 cm2. The cells were

controlled by an EG & G Princeton Applied Research

Potentiostat/Galvanostat Model 273, and the data was col-

lected with a Nicolet 4094B Storage Oscilloscope connected

to a laboratory computer. For all of the data presented, a

negative current denotes an overall cathodic process.

2.3. Porous carbon electrodes

The carbon electrodes of this study were made from a

vapor-grown carbon fiber that has been described by Tibbetts

Fig. 1. Electrochemical cell. The porous carbon electrode is located 1 mm

away from the 100-mm diameter lithium–aluminum (reference) wire and

2 mm away from the lithium counter electrode. The superficial area of the

working and counter electrodes was 3.88 cm2.

Fig. 2. Upper micrograph: electrode surface; lower micrograph: electrode

cross-section.
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Fig. 3. High-magnification electrode micrographs.

Fig. 4. Pseudo-thermodynamic data. The experimental data are shown to be well represented by Eq. (A.3), corresponding to the curve labeled Interaction

relation. The top panel shows that the Interaction model is in good agreement with the cell Nernst equation (Eq. (A.2) with VI�I ¼ 0) for dilute lithium

(YI � 1).
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etal. [10,12,13].Thedensityof thefibers is2:02 � 0:02 g/cm3,

which can be compared with 2.26 g/cm3 for graphite [12].

The fibers were grown by Applied Sciences. The electrode

porosity after compression at 650 psi and 80 �C was 20%.

Low-magnification electron micrographs of the face and

cross-section of the electrodes are shown in the upper and

lower pictures of Fig. 2, respectively. The thickness of the

porous electrode was 35 mm. Higher magnification images

of the electrode face are displayed in Fig. 3, wherein the

fibrous nature of the active material is immediately apparent.

By measuring the resistance between the electrode face and

current collector, we determined an effective solid-phase

conductivity of 3:2 � 10�4 S/cm. Neither the effective solid-

phase conductivity nor the electrode thickness changed

substantially after soaking the electrode in the electrolyte

for 24 h.

Nitrogen adsorption measurements (using a Quantachrome

Autosorb-1 automated gas adsorption system) yielded a sur-

face area of 3 m2/g for the solvent-cast electrode, correspond-

ing to a specific surface of about 60,000 cm2/cm3. As will be

shown in Section 4, a specific surface of 2000 cm2/cm3 was

used to represent the experimental data, perhaps indicating

that not all of the surface carbon is active for electrochemical

reaction. The surface-area measurements on actual electro-

des, however, reflect the influence of binder materials and

current collector and in general are quite approximate. Fong

et al. [22] have shown that the initial capacity loss scales

with surface area for petroleum cokes, but no surface-area

dependence was observed for graphites.

3. Mathematical model

We have placed all of the mathematical development in

Appendixes A and B. The approach taken in treating the

thermodynamics and electrochemical kinetics derives from

the characterization of partially graphitized single-fiber

microelectrodes [4]. The description of the transport phe-

nomena for the liquid phase and the treatment of ohmic loses

in the solid phases corresponds closely to those derived and

implemented in [1]. The inclusion of the Appendix is

motivated by two considerations: (1) it is unlikely that

the simulations presented in this paper could be understood

or reproduced by future researchers without a complete

listing of the equations solved (Appendix A) and (2) an

asymptotic analysis is used to show that when diffusion

resistance within the carbon fibers of the electrode is neg-

ligible, the governing equations for the lithium ion cell can

be greatly simplified (Appendix B). The resulting mathe-

matical model comprises a set of coupled, multivariable,

nonlinear differential equations, which were solved using

the routine described in [21].

Fig. 5. First-cycle inefficiency. The shaded cathodic peak centered at 0.7 V corresponds to solvent reduction. The uniform and sustained periodic state is

obtained after the fourth cycle.

298 M.W. Verbrugge et al. / Journal of Power Sources 110 (2002) 295–309



4. Results and discussion

4.1. First-cycle inefficiency and electrode conditioning

An aspect of the performance of lithiated carbon electro-

des that is still not fully understood concerns the loss of

capacity on the first cycle of the electrode [22,33–36]. As is

shown clearly in the top, left panel of Fig. 5, a large peak in

the current response is seen on the first cycle when the

carbon electrode is (cathodically) charged, and the corre-

sponding first (anodic) discharge yields a cycle efficiency

of 26 precent during the subsequent anodic portion of the

cycle. It can be postulated that the large cathodic peak

current starting at about 0.8 V corresponds to the reduction

of propylene carbonate to form propylene gas and carbonate

anion by an overall process involving two electrons [37,38].

The evolution of gas from the cell, vented through the tubing

shown in Fig. 1, supports this speculation. Upon subsequent

cycles, however, no further evidence of solvent reduction or

cycle inefficiency is observed, as indicated by the voltam-

mograms for cycles 2–4 of Fig. 5. Thus, it appears that the

carbon sites active in the solvent reduction process are

de-activated during the first intercalation half cycle. Note

that the lithium de-intercalation current observed during the

first de-intercalation half cycle yields less anodic charge

than subsequent de-intercalation half cycles, reflecting that

the cathodic charge associated with gas evolution cannot be

recovered anodically.

From a practical perspective, one needs only to cycle the

electrode once to remove the solvent reduction process. Since

it is common to fabricate cells with discharged carbon

electrodes (devoid of lithium) and discharged metal oxide

cathodes (containing lithium), one can simply cycle the

electrode once at 0.1 mV/s, terminate the procedure upon

completion of the cycle at 2 V versus Li, and use subsequently

the wetted electrode in a battery with the expectation of

Fig. 6. Experiment–theory comparison. Both the experimental (upper figure) and theoretical (lower figure) results correspond to the uniform and sustained

periodic state. The potential scan rate is indicated, and the letters A–F refer to the electrode potential and correspond to the same letters appearing in Figs. 7–10.
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nominally 100 percent for ensuing cycles. Provision must be

made for loss of lithium, however.

4.2. Experiment–theory comparison

The upper curves in Fig. 6 correspond to the uniform and

sustained periodic state and potential scan rates of 0.1, 1, 10,

and 100 mV/s. Calculations from the theoretical model are

displayed in the lower panel. Both experimentally and

theoretically, the uniform and sustained periodic state is

obtained after about two cycles for the slow potential scan

rates and after about four cycles for the 10 and 100 mV/s

scan rates. The calculations are for the fourth cycle—cal-

culations for subsequent cycles plot over the curves and are

not discernible from those displayed.

The parameters and properties employed in the simula-

tions are given in Table 1. In particular, we note that d is

the only unknown dimensionless parameter. The exchange

current density and symmetry factor were taken to be those

measured in [4] on individual carbon fibers. A symmetry

Table 1

Parameters and properties

Quantity Value Units

as 2000 cm2/cm3

c0 1.3 M

cref 1 M

cs 5.1 M

D [28] 4:2 � 10�6 cm2/s

i0;ref [4] 1 mA/cm2

‘1 2 mm

‘2 35 mm

t0
þ [1,39] 0.2 –

T 298 K

b [4,28] 0.5 –

E1 0.8 –

E2 0.2 –

Ee 1 –

s 3:2 � 10�4 S/cm

n 2 –

These values yield d ¼ 152; d is the lone dimensionless parameter that is

adjusted to fit the data shown in Fig. 6.

Fig. 7. Profiles of the dimensionless salt concentration C ¼ c=c0 (a),

liquid-phase potential C2 ¼ fF2 (b), and liquid-phase conductivity

~kðCÞ ¼ F2kðcÞ=ðFc0DÞ (c). The letters A–F refer to the potentials indicated

by the corresponding letters in Fig. 6 (potential scan rate: 1 mV/s).

Fig. 8. Profiles of the dimensionless solid-phase potential C1 ¼ fF1,

current density in the liquid phase ~i2 ¼ ‘1i2=ðFc0DÞ, and fractional

occupancy in the intercalation host carbon YI (potential scan rate: 1 mV/s).
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factor of 0.5 was also measured for the Li–Liþ reaction in

[28], wherein the quantity D=ð1 � tþ0 Þ was found to be

constant for salt concentrations below 1 M. The specific

surface area as (and thus d) was fitted to the data. The

sensitivity of the simulated voltammograms to this para-

meter is discussed below.

Although the curves display a wide variation in structure,

both along an individual curve and from curve to curve, the

mathematical description is shown to capture the apparent

features of the experimental data. Differences between any

two electrodes are of the magnitude of the differences

between the experimental data and theoretical calculations,

and it would be unproductive to adjust further the various

model parameters in order to improve the experiment–

theory agreement.

4.3. Concentration, potential, and conductivity profiles

Profiles of the dimensionless salt concentration C, liquid-

phase potential C2, liquid-phase conductivity ~k, solid-phase

potential C1, current density in the liquid phase ~i2, and

fractional occupancy within the intercalation host carbon YI

are given in Figs. 7 and 8 for a scan rate of 1 mV/s and in

Figs. 9 and 10 for a scan rate of 100 mV/s. These dimen-

sionless quantities are defined in Table 31 of Appendix A.

The profiles correspond to the uniform and sustained per-

iodic state. The electrode potentials are indicated by the

symbols A–E (cf. lower panel of Fig. 6). These same

electrode potentials correspond to the value of fF1 at

x ¼ ‘1 þ ‘2 in the top panels of Figs. 8 and 10. In contrasting

the results for 1 and 100 mV/s, we note that the larger

potential scan rates yield larger current densities, as the salt

concentration is less depleted at the electrode–electrolyte

interface during the cycle, the mass-transport resistance is

thereby reduced, and the potential drops in both the liquid

and solid phases are increased commensurate with the

increased current flow. Just as there is less salt reacted

Fig. 9. Profiles of the dimensionless salt concentration C (a), liquid-phase

potential C2 (b), and liquid-phase conductivity ~kðCÞ (c). The letters A–F

refer to the potentials indicated by the corresponding letters in Fig. 6

(potential scan rate: 100 mV/s).

Fig. 10. Profiles of the dimensionless solid-phase potential C1, current

density in the liquid phase ~i2, and fractional occupancy in the intercalation

host carbon YI (potential scan rate: 100 mV/s).

1 See Table 3 for definitions of dimensionless quantities employed in

Table 2.
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per cycle with increasing potential scan rates, the utilization

of active material is also diminished, evidenced by the

comparison of the YI � X plots of Figs. 8 and 10.

4.4. Sensitivity analyses

An important aspect to understanding the behavior of

porous carbon intercalation electrodes is the identification of

performance-limiting processes. Although the only para-

meter adjusted to obtain the theoretical voltammograms

shown in Fig. 6 was the specific surface as, incorporated

into the dimensionless group d ¼ as‘
2
1i0;ref=ðc0DFÞ, the

theoretical results for the uniform and sustained periodic

state displayed in Fig. 11 indicate that the calculations of

Fig. 6 follow closely those of a kinetically facile electrode

reaction (d ! 1), underscoring the facile nature of the Li–

Liþ reaction [28] and the utility of employing high-surface-

area carbons as lithium-intercalation electrodes. (Note that

for the case of d ! 1 there are no adjustable parameters

used in the model calculations).

For the conditions and quantity values associated with

Fig. 6, the calculations are far less sensitive to the salt

diffusion coefficient D, lithium-ion transference number

t0
þ, and solid-phase conductivity s than to the liquid-phase

conductivity k. The influence of the liquid-phase conduc-

tivity on the theoretical voltammograms is illustrated in

Fig. 12 for the uniform and sustained periodic state. The

solution-phase ohmic drop is influenced additionally by the

system geometry (e.g. ‘1 and to a lesser extent ‘2).

5. Summary and conclusion

The deliverable energy and power from the lithiated-

carbon electrode influence directly the range and accelera-

tion capabilities of electric vehicles utilizing battery systems

Fig. 11. Sensitivity to the specific surface area as, which enters the dimensionless formulation through the group d ¼ as‘
2
1i0;ref=ðc0DFÞ. For the theoretical

calculations shown in Fig. 6, as ¼ 2000 cm2 (and d ¼ 152). Upper figure, 1 mV/s; lower figure, 100 mV/s.
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comprising lithiated carbon. For hybrid electric vehicles, the

power density plays a critical role, as higher power density

batteries allow automakers to reduce the size of the heat

engine, thereby improving fuel economy and reducing

unwanted emissions. In this work, we compare theoretical

calculations—based on the governing thermodynamic,

kinetic, and transport phenomena—with well-controlled

experiments conducted on high-power lithiated-carbon elec-

trodes that are constructed by a solvent-casting process. The

mathematical treatment, which couples the phenomena

taking place within insertion electrodes (on a microscopic

scale) to macroscopic transport, is shown to describe quan-

titatively a wide range of electrochemical experiments. In

addition, initial cycling of the electrodes is investigated as

are microstructural characteristics that distinguish the active

electrode materials. The analysis is used to show that the

high surface area of the high-power solvent-cast electrode

yields little overall electrochemical reaction resistance, and

the performance of the cell used in this study is determined

primarily by liquid-phase resistance. An asymptotic analysis

(Appendix B) is used to show that diffusion resistance within

the carbon fibers of the electrode is negligible; this fact

simplifies the model calculations and contributes to our

overall understanding of insertion processes associated with

host particles of very small dimensions. In summary, it is

shown quantitatively that the vapor-grown lithiated-carbon

electrodes yield very high current densities, consistent with

the material requirements of high-power density batteries.

Fig. 12. Sensitivity to the liquid-phase conductivity kðcÞ. The theoretical calculations shown in Fig. 6 utilize k ¼ kPCþLiClO4
[29,30]. Upper figure, 1 mV/s;

lower figure, 100 mV/s.

List of symbols

a radius of host fibers or particles (cm)

as specific surface (cm2/cm3)

c concentration (mol/cm3)

D diffusion coefficient (cm2/s)

f F=RT (V�1)
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Appendix A

The thermodynamic and phenomenological equations

used in the mathematical model are presented in this section.

These equations are then combined with standard conserva-

tion equations [17] to derive the governing partial differ-

ential equations for the cell model.

A.1. Thermodynamics

The treatment of both the thermodynamics and interfa-

cial-kinetics of the reaction at the fiber surface follows from

the development given in [4], where these phenomena were

studied using well-characterized single-fiber electrodes. The

electrochemical reaction at the fiber surface is written as

Liþ þ e� þ SC Ð
ka

kc

½Liw � S
�w
C �: (A.1)

A vacant site within the carbon host and available for lithium

intercalation is represented by SC. After insertion, the

lithium still retains a significant positive charge w, and the

carbons originally constituting the host site take on a

negative charge of equal magnitude, �w. The open-circuit

potential U of the intercalation electrode relative to a

metallic lithium electrode, is given by

FU ¼ mLi þ mS � mI;

where F refers to the Faraday’s constant, I refers to the

intercalating species (e.g. ½Liw � S
�w
C � of reaction (A.1)), and

S refers to a vacant site available for reaction with species I

(e.g. SC of reaction (A.1)). The chemical potential of the

metallic lithium electrode corresponds to that of pure

lithium, mo
Li. To formulate the chemical potentials for the

intercalation-electrode species, mS and mI, a convenient

standard state corresponds to an infinitely dilute solution

of I in host S. The cell potential is written as

U ¼ Uy þ RT

F
ln

YS

YI

þ RT

F
ln

gS

gI|fflfflfflfflffl{zfflfflfflfflffl}
VI�I

; (A.2)

where Y denotes fractional occupancy, YI þYS ¼ 1, g
refers to an activity coefficient, [23] and the standard cell

potential Uy, the concentration-independent portion of the

cell potential, is given by

FUy ¼ mo
Li þ mo

S � myI :

The reference states require that

gI ! 1 as YI ! 0 gS ! 1 as YS ! 1:

Thus, limYI!0VI�I ¼ 0. Because of the reference states

chosen, the deviation from ideal solution behavior is due

to I-I interactions, resulting in the addition of V I–I to the

Nernst expression for the cell potential. We make the

assumption that the contribution of the excess free energy

can be expressed as

VI�I ¼ a1a2
ðYI þ a3Y2

I Þ
1 þ a1ðYI þ a3Y2

I Þ
; (A.3)

f� mean molar activity coefficient of the salt

F Faraday’s constant (96487 C per equivalent)

i current density (A/cm2)

i0 exchange-current density (A/cm2)

i0;ref reference exchange-current density (A/cm2)

ka anodic rate constant (mol/cm2 s)

kc cathodic rate constant (cm/s)

‘1 thickness of electrolyte region (cm)

‘2 thickness of porous-electrode region (cm)

n number of electrons per reaction

N flux density (mol/cm2 s)

r radial coordinate (cm)

R gas constant (8.314 J/mol K)

SC vacant site within the carbon host

t time (s)

t0
i transference number of species i (relative to

the solvent velocity)

T temperature (K)

U open-circuit potential (V)

v velocity (cm/s)

V I–I interaction potential contribution (Eq. (A.2))

(V)

x distance coordinate (cm)

z charge number

a dimensionless group a ¼ ai0;ref=ðFDIcsÞ
b transfer coefficient of reaction

g activity coefficient

E porosity

z dimensionless group z ¼ ða=‘1Þ2
D=DI

Zs surface overpotential (V)

Y fractional occupancy

k liquid-phase ionic conductivity (S/cm)

m chemical potential (J/mol)

s solid-phase electronic conductivity (S/cm)

F electric potential (V)

Superscripts and subscripts

o pure state

y secondary reference state at infinite dilution

þ cation (Liþ)

� anion (ClO�
4 )

0 initial condition or solvent

1 solid phase

2 liquid phase

e electrolyte region, 0 < x < ‘1

I guest intercalation species

S vacant host site

T total
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where the parameters

a1 ¼ 13; a2 ¼ 1:13583; and a3 ¼ 3

were fit to the open-circuit data (cf. Fig. 4). This approach to

treating the excess free energy is analogous that originally

proposed by Wohl [24] for the treatment of excess functions.

We shall refer to Eq. (A.2), with the inclusion of V I–I, as the

interaction relation. A comparison of the open-circuit poten-

tial data with the Nernst equation and the interaction relation

is shown in Fig. 4. A value of Uy ¼ 1:178 V was employed.

Note that as the fractional occupancy YI tends to zero, the

Nernst equation is recovered for the cell potential, both

experimentally and theoretically. The use of the interaction

relation allows for the straightforward application of ther-

modynamic relationships and a convenient algebraic expres-

sion for describing the equilibrium behavior.

A.2. Transport phenomena

Concentrated solution theory [17,25] is used to relate

species’ fluxes to electrochemical potential gradients:

cirmi ¼ RT
X

j

cicj

cTDij

ðvj � viÞ: (A.4)

The concentration and velocity of species i are given by ci

and vi, respectively. The diffusion coefficient representing

the interaction of species i and j corresponds to Dij, and cT

represents the total solution concentration including the

solvent. For the binary electrolyte of this study, the three

diffusion coefficients (Dþ0, D�0, and Dþ�) can be replaced

with three parameters that are more commonly reported in

the literature: the cation transference number (relative to the

solvent velocity),

t0
þ ¼ 1 � t0

� ¼ zþDþ0

zþDþ0 � z�D�0

;

the salt diffusion coefficient,

D ¼ cT

c0

1 þ d ln f�
d ln c

� �
Dþ0D�0ðzþ � z�Þ
zþDþ0 � z�D�0

;

and the electrolyte conductivity, which shall be discussed

below in the context of the electric potential in solution. Due

to lack of experimental data, we shall ignore activity coeffi-

cients (f� ¼ 1) in formulating the electrochemical poten-

tials, making Eq. (A.4) similar to the Stefan–Maxwell

relations [26,27]. In addition, the solvent is taken to be

immobile and of invariant concentration, and the salt diffu-

sion coefficient and cation transference number are assumed

constant. These assumptions should be valid for salt con-

centrations below 1 M for the system of study [28]. The

result is the cation (Liþ) flux relation given as Eq. (A.7). The

electric potential in solution F2 is defined in terms of a

lithium reference electrode,

Liþ þ e� Ð Li:

(F1 shall be used to refer to the solid-phase electric poten-

tial). At the reference electrode,

mþLi þ m�e ¼ mLi;

and upon substitution of expressions for the quantities mi, the

solution current density, electric potential, and salt concen-

tration are found to be related by

i2 ¼ �krF2 þ
k
F
ð1 � t0

þÞrmsalt

¼ �krF2 þ 2RT
k
F
ð1 � t0

þÞr ln c; (A.5)

in agreement with the treatment in Section 81 of [17]. The

solution conductivity is related to the binary diffusion

coefficients:

1

k
¼ � RT

cTzþz�F2

1

Dþ�
þ c0t0

�
nþcD�0

� �
:

For the electrolyte of this study, [1,29,30]

k ¼ kmax
m

mmax

� �A

exp Bðm � mmaxÞ2 � A
m � mmax

mmax

� �	 

;

(A.6)

where the molality of the salt m is in units of mol/kg and is

related to the molar salt concentration (mol/l) by c ¼ m=r,

and the conductivity k is in units of S/cm when the constants

are specified as follows:

A ¼ 0:855

kmax ¼ 0:00542

B ¼ �0:08

mmax ¼ 0:6616

����
����r ¼ 1:204:

The remaining phenomenological transport relation consists

of Ohm’s law for relating the solid phase current density i1
and electric potential,

i1 ¼ �srF1:

In Appendix B, transport resistance within the carbon fibers

is considered, and it is shown that for the fibers of this study,

transport resistance within the fibers does not affect the

current–potential relation appreciably.

A.3. Electrochemical reaction

A Butler–Volmer equation is used to relate the local

current density normal to the fiber surface in and the

potential devoted to driving the electrochemical reaction

(A.1), the surface overpotential Zs:

in ¼ i0 eð1�bÞfZs � e�bfZs

h i
;

where f ¼ F=RT and b is the symmetry factor. The sym-

metry factor is taken to be one half in this work, reflecting a

strongly solvated ion [31] and consistent with measurements

of the Li–Liþ reaction [4,28]. The exchange current density

i0 is related to the anodic and cathodic rate constants, ka and
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kc, respectively, and the various reactant concentrations

[17,32]:

i0 ¼ F kccþLið1 �YIÞ
� �ð1�bÞðkaYIÞb:

For the conditions of this work, the surface overpotential is

given by

Zs ¼ V � U ¼ V � Uy þ RT

F
ln

1 �YI

YI
� VI�I

	 

;

where V is the potential of the lithiated carbon electrode

relative to a lithium reference located in solution of the same

liquid-phase composition, and U is the open-circuit potential

relative to the same reference electrode. Following the

development of [4], the exchange current density is refer-

enced to a salt concentration of 1 M and fractional occu-

pancy of YI ¼ 1=2 (i.e. LiC12 for the graphitic carbon

anode):

i0;ref ¼ 2i0
��
c¼1 M;YI¼1=2

¼ Fkð1�bÞ
c ðkaÞb:

Hence, i0;ref is a constant and is twice the value of the

exchange-current density when YI ¼ 1=2 and c ¼ 1 M.

Recognizing that V ¼ F1 � F2, one can recast the

charge-transfer relation in a form better suited for numerical

analysis, with the result being Eq. (A.8) (note in ¼ Fjn).

A.4. Cell model

The battery is modeled as one-dimensional (see Fig. 1):

the lithium electrode is at x ¼ 0; the electrolyte region is

0 � x � ‘1, with the lithium reference electrode at x ¼ ‘1=2;

the Li–C region is ‘1 � x � ‘1 þ ‘2 with the current col-

lector at x ¼ ‘1 þ ‘2. Transport is described in each of the

two regions (electrolyte and Li–C) by a system of differ-

ential equations, and the two systems are coupled together

at their interface x ¼ ‘1. The dependent variables in the

electrolyte region are the actual salt concentration c in

the pore fluid, the potential F2 in the pore fluid, and the

volume-averaged (superficial) current density i. The depen-

dent variables in the Li–C region are c, F2, and i, as well

as i2 (current density in the pore fluid), F1 (potential in the

solid phase), and YI (fractional occupancy in the solid

phase).

The flux of lithium ions in the pore fluid is given by

[1]

Nþ ¼ �Drc þ
t0
þ

EeF
i in the electrolyte region

¼ �Drc þ t0
þ
F

i2 in the Li�C region; (A.7)

reflecting the fact that in the electrolyte region i ¼ Eei2 (the

stoichiometric coefficient nþ has been set equal to one in

the above formulae). The normal current density in at the

electrolyte–carbon interface in the Li–C region is given

as in ¼ Fjn, where

Fjn ¼ i0;ref
c

cref

� �1�b

YIe
ð1�bÞfZ � ð1 �YIÞe�bfZ

h i
; (A.8)

with

Z ¼ F1 � F2 � Uy þ VI�IðYIÞ;

as discussed in Section A.1 and phenomenological equa-

tions.

The three field equations in the electrolyte region are:

@c

@t
¼ Dr2c; (A.9)

i

EekðcÞ
¼ �rF2 þ

n
f
ð1 � t0

þÞr ln c; (A.10)

r � i ¼ 0: (A.11)

The six field equations in the Li–C region are

@c

@t
¼ Dr2c þ

ð1 � t0
þÞ

F
r � i2; (A.12)

i2

kðcÞ ¼ �rF2 þ
n
f
ð1 � t0

þÞr ln c; (A.13)

r � i ¼ 0; (A.14)

E2

F
r � i2 ¼ �E1cs

@YI

@t
; (A.15)

i � E2i2 ¼ �E1srF1; (A.16)

E1cs
@YI

@t
¼ �asjn: (A.17)

The pore-fluid quantities (c, i2, F2) are local averages over

the liquid phase and are thus defined at all positions x.

Similarly the solid-phase variables F1 and YI are local

averages over the solid phase and are defined everywhere

in the Li–C region as well. The normal fluxes jn at the fiber

surfaces appear also as local averages in Eq. (A.17) (see also

Appendix B). Eqs. (A.9) and (A.12) express material bal-

ance for the salt [1]. Eqs. (A.10) and (A.13) express an

Ohm’s law relation for the solution phase (cf. Eq. (A.5)).

Note that the stoichiometric coefficient n ¼ nþ þ n� is 2 for

the 1:1 electrolyte of this study. Eqs. (A.11) and (A.14)

express conservation of charge. Eq. (A.15) expresses charge

conservation in the liquid phase. Eq. (A.16) is an Ohm’s law

relation for current density in the solid phase. Eq. (A.17) is

the dimensioned form of Eq. (B.7) derived in Appendix B

and results from a material balance on the guest species

within the insertion electrode.

Boundary conditions for the two regions are:

EeFNþ ¼ i at x ¼ 0; (A.18)

F2 ¼ 0 at x ¼ ‘1

2
; (A.19)

306 M.W. Verbrugge et al. / Journal of Power Sources 110 (2002) 295–309



limx!‘�
1
Ee
@c

@x
¼ limx!‘þ

1
E2
@c

@x
limx!‘�

1
c ¼ limx!‘þ

1
c

limx!‘�
1

i ¼ limx!‘þ
1

i

limx!‘�
1
F2 ¼ limx!‘þ

1
F2

limx!‘þ
1

i � E2i2 ¼ 0

9>>>>>>>>=
>>>>>>>>;

at x ¼ ‘1; (A.20)

Nþ ¼ 0

i2 ¼ 0

F1 ¼ V or i ¼ icell

9>=
>; at x ¼ ‘1 þ ‘2: (A.21)

The boundary condition at x ¼ 0 states that current is

carried by the lithium ion at the lithium electrode. The

boundary condition at x ¼ ‘1=2 sets the reference electrode

at this point. The boundary conditions at x ¼ ‘1 specify

continuity of various physical quantities at the interface, as

well as the fact that the solid-phase current is zero at the

interface. Both the salt flux and current vanish at the current

collector, as stated in the first two conditions at x ¼ ‘1 þ ‘2.

The two possibilities for the last condition are for either

voltage or current control.

Table 2 restates these equations in dimensionless form

and gives an indication of how they can be discretized for

numerical solution. The boundary conditions expressing

continuity of the dependent variables at x ¼ ‘1 are auto-

matically implemented in the finite difference scheme,

because these variables must be single-valued at each node;

thus these conditions do not appear in the table. Note in

particular that the continuity of C2 at the interface serves

as a boundary condition for the second field equation in the

Li–C region.

Appendix B

Our purpose in this appendix is to show that the model

equations proposed in [1], which include diffusional resis-

tance within the solid phase, can be simplified when a

dimensionless group (z, defined below) that characterizes

the time of transition to steady-state for diffusion within the

insertion electrode is small. At the end of appendix, we show

how these simplified equations can also apply under some-

what more general assumptions than those utilized in [1].

The material-balance equation for lithium in the carbon

phase is:

@YI

@t
¼ DIr � 1 þ d ln gI

d lnYI

� �
rYI

	 

:

The thermodynamic quantity ð1 þ d ln gI=d lnYIÞ, which

can be evaluated from open-circuit potential data such as

that shown in Fig. 4, has been shown to be a strong function

of guest occupancy [4]. At the fiber surface, a Butler–Volmer

condition is employed [1]:

�DIcs 1 þ d ln gI

d lnYI

� �
rYI � n ¼ jnðc;F1;F2;YIÞ;

where the definition of jn is given by Eq. (A.8), and n is an

outward unit normal on the fiber surface. An initial condition

of the form

YIðt ¼ 0Þ ¼ Y0
I ;

is also assumed. The problem can be put in dimensionless

form using the following definitions:

a ¼ ai0;ref

FDIcs
z ¼ D

DI

a

‘1

� �2

�r ¼ ar;

in addition to the dimensionless groups given in Table 3,

where a is a characteristic length for the fiber; e.g. the fiber

Table 2

Dimensionless form of the model equations

Li electrode, X ¼ 0 Electrolyte Interface, X ¼ 1 Li–C electrode Current collector,

X ¼ L

~i ¼ �EeC0=ð1 � t0
þÞ @C=@t ¼ C00 ðEeC0Þleft ¼ ðE2C0Þright @C=@t ¼ C00 þ ð1 � t0

þÞð~i2Þ0 C0 ¼ 0

~i=½Ee~kðCÞ� ¼ �C0
2þ

nð1 � t0
þÞð ln CÞ0

~i=½Ee~kðCÞ� ¼ �C0
2þ

nð1 � t0
þÞð ln CÞ0 or

C2 ¼ 0 when X ¼ 1=2

~i=½Ee~kðCÞ� ¼ ½�C0
2þ

nð1 � t0
þÞð ln CÞ0�left

~i2=~kðCÞ ¼ �C0
2þ

nð1 � t0
þÞð ln CÞ0

~i2=~kðCÞ ¼ �C0
2þ

nð1 � t0
þÞð ln CÞ0

ð~iÞ0 ¼ 0 ð~iÞ0 ¼ 0 E2
~i2 ¼ ~i ð~iÞ0 ¼ 0 ð~iÞ0 ¼ 0

– – E2ð~i2Þ0right ¼ �E1Cs@YI=@t E2ð~i2Þ0 ¼ �E1Cs@YI=@t ~i2 ¼ 0

– – ~i � E2
~i2 ¼ �E1~sðC0

1Þright
~i � E2

~i2 ¼ �E1~sC0
1

~i ¼ ~icell or C1 ¼ fV

– – E1Cs@YI=@t ¼ �dJn E1Cs@YI=@t ¼ �dJn E1Cs@YI=@t ¼ �dJn

Jn ¼ ðC=CrefÞ1�b½YIe
ð1�bÞ~Z � ð1 �YIÞe�b~Z�; ~Z ¼ C1 �C2 � fUy þ fVI�IðYIÞ. @=@X is represented with a prime. Table 3 gives the definitions of the

dimensionless quantities. Note that a constant transference number has been assumed, consistent with available literature data. For the simulations of this

work, YIð0;XÞ ¼ 0:02, Cð0;XÞ ¼ 1:3, and results are presented for the fourth cycle (cf. Fig. 6).

Table 3

Dimensionless quantities

t ¼ tD=‘2
1 X ¼ x=‘1 L ¼ ð‘1 þ ‘2Þ=‘1

C ¼ c=c0 Cref ¼ cref=c0 Cs ¼ cs=c0

~Nþ ¼ ‘1Nþ=ðc0DÞ ~i ¼ ‘1i=ðFc0DÞ ~i2 ¼ ‘1i2=ðFc0DÞ
C1 ¼ fF1 C2 ¼ fF2 ~Z ¼ fZ

~kðCÞ ¼ F2kðcÞ=ðFc0DÞ ~s ¼ F2s=ðFc0DÞ d ¼ as‘
2
1i0;ref=ðc0DFÞ

Along with the dimensionless dependent and independent variables are

given the dimensionless parameters d and L, which can be altered to

optimize battery performance.
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radius for cylindrical or spherical fiber; for this study,

a � 2 � 10�6 cm. The scaled forms of the above equations

are:

z
@YI

@t
¼ �r � 1 þ d ln gI

d lnYI

� �
�rYI

	 

; (B.1)

� 1 þ d ln gI

d lnYI

� �
�rYI � n ¼ aJnðC;C1;C2;YIÞ: (B.2)

For practical insertion-electrode materials and particle sizes,

z is usually less than 0.001. Define YI0
to be the solution to

the above equations in the limit as z ! 0. YI0
will be an

accurate approximation to the solutions of Eqs. (B.1) and

(B.2) when z is small.

Before proceeding, it is useful to note the parameter

relationship

dz
a
¼ asaCs: (B.3)

In the following analysis, it will be assumed that d, z, asa,

and Cs are constants whose values can be chosen indepen-

dently. A value for a is then determined by Eq. (B.3) in terms

of these other dimensionless groups.

To determine YI0
one must solve

0 ¼ �r � 1 þ d ln gI

d lnYI

����
YI0

 !
�rYI0

" #
; (B.4)

� 1 þ d ln gI

d ln YI

� ����
YI0

!
�rYI0

� n ¼ aJnðC;C1;C2;YI0
Þ:

(B.5)

If one can choose a constant value of YI0
such that

aJnðC;C1;C2;YI0
Þ ¼ 0 at all boundary points of the fiber,

then this constant value is also a solution to Eqs. (B.4) and

(B.5). Eq. (B.3) guarantees this, because it implies that a
tends to zero in the limit as z ! 0.

To proceed further we recall that in the treatments pro-

vided in [1], the variables c, F, and F2 are assumed constant

over the surface of the carbon fiber; we shall make the same

assumption. By integrating Eq. (B.1) over the fiber, one then

finds that

Volume z
@YI0

@t
¼ �Area aJnðC;C1;C2;YI0

Þ; (B.6)

in the limit as z ! 0, where the volume and area of the fiber

must be computed using dimensionless coordinates in which

the characteristic fiber size is order one, so that on average

Area

Volume
¼ asa

E1

:

Using Eq. (B.3), one can rewrite Eq. (B.6) as

E1Cs
@YI0

@t
¼ �dJnðC;C1;C2;YI0

Þ: (B.7)

Thus, the time evolution of YI0
is determined by the initial

state Y0
I and Eq. (B.7). Consistent with this development, in

[6] Eq. (B.7) was employed instead of solving a transient

diffusion equation (e.g. Eq. (B.1)) for the intercalate species

(analysis of two-dimensional effects in thin-film lithium-ion

batteries was focused in [6]).

The parameter d measures how facile the kinetics of the

electrochemical reaction (A.1) is, as can be seen from

Eq. (B.7); letting d tend to infinity forces the equilibrium

condition JnðC;C1;C2;YI0
Þ ¼ 0.

One can estimate the error in the approximate solution YI0

by considering the residual in Eqs. (B.1) and (B.3) when

YI ¼ YI0
. Eq. (B.7) can then be used to determine time

derivatives of YI0
. If these time derivatives are too large, then

Eq. (B.4) becomes a poor approximation to Eq. (B.1), and YI0

is a poor approximation to YI. Thus, YI0
can be viewed as a

good approximation as long as z@YI0
=@t remains small. Using

Eq. (B.7), one sees that this is equivalent to the condition

dz
E1Cs

jJnðC;C1;C2;YI0
Þj � 1:

Similarly, to show that YI0
comes close to satisfying

Eq. (B.2) the condition

ajJnðC;C1;C2;YI0
Þj ¼ dz

asaCs

jJnðC;C1;C2;YI0
Þj � 1

must also hold.

Although the approach outlined here is valid only when

z � 1, it shows that the model equations will not change (in

the limit of small z) even if the activity coefficients appear-

ing in the flux expression for lithium in carbon fibers are

nonzero. This is significant, because these coefficients can

vary over a full order of magnitude [4]. In addition, all that is

required with regard to the insertion particle shape is to

assume that its geometry is simple enough so that its

characteristic dimensions are all of the same order (e.g.

maximum and minimum particle dimensions).

It should also be mentioned that the analysis we have

given and those of [1] depend on the assumption that the

variables C, C1, and C2 are constant on the scale of the

fibers. This assumption is only approximately true, and it

conceivably gives rise to errors (in both models) that are as

large or larger than the errors arising from the approximation

YI � YI0
. Clearly a more detailed derivation of the govern-

ing equations for a porous electrode would be necessary in

order to quantify these issues.
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